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Proxy Bidding in Combinatorial 
Auctions
� Bidders give a set of values to an agent
� Agents place bids in an internal auction that 

solves the WDP and announces prices
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Benefits
� Speeds up auction
� Simplifies the strategy space
� Interactions with proxies may have 

several steps, allowing deferred 
computation of valuations



A Simple Iterative 
Combinatorial Auction
� Bidders make offers on bundles of items
� All bids are retained
� Price bundles at highest bid
� Inform current winners 

(not necessarily the highest bidders)
� Non-winning bidders must beat price by δ

* this will not be a strategic analysis!



Proxy Bidding Rules
� If the agent is not already winning something, it 

bids on the item that provides the most surplus

 where      is the price of bundle b.

� Bid    
� If more than one b satisfies, then randomly 

select one.

b* = argmax
b

{vi (b)− pb}
pb

pb +δ



Example

20161671677a4

25171691131a3

20181231594a2

201018218310a1

ABCBCACCABBA



The Proxy Auction Problem
� PAP: Compute the final prices and 

allocation of a proxy auction given the 
bids

� By Simulation
� Agents bid
� WDP and prices are computed
� Repeat 



Simulation is Undesirable 
Because… 
� Accuracy depends on bid increment
� Slow: Solves multiple WDPs
� Sensitive to magnitude of values
� Sensitive to ordering of agents
� Sensitive to tie-breaking rules

� There is some regularity that we can take 
advantage of…



Some Observations
� Periods of steady progress
� Agents maintain a demand set
� Spread bids among bundles in demand set

� Punctuated by changes in behavior when
� A new bundle is added to someone’s 

demand set
� An agent drops out
� An allocation becomes competitive and its 

members start passing
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The Algorithm: Key Concepts
 - Demand Set
� The bundles that give an agent the maximal 

surplus at current prices.
 - Attention
� The proportion of time an agent spends 

bidding on a bundle in its demand set.
 - Trajectory
� The slope of the price of b, θb

t = θi ,b
t

i
∑



Competitive Allocations
� The set of competitive allocations (CAs) 

contains the solutions, f, with the maximal 
value, i.e.,

� Must account for bidders who are actively 
bidding and those who have stopped bidding

� CAs have slopes:

� CAs are winning with frequency 

V ( f ) = max
ˆ f 

V ( ˆ f )

β f

θ f = θi, fi
i∈ f
∑



New Bundle Collisions
� For

Pb

Pc

vi (b)− pb = vi (c)− pc

� When the surplus that i gets from c  is as 
good as from b, i will add c to its demand set

� Special case: when the null bundle enters 
demand set, agent becomes inactive

b ∈ Di
t ,c ∉ Di

t

θb
t

θc
t



Competitive Allocation 
Collisions
� For f ∈ CA, ˆ f ∉ CA

f = {−,−, AB}

ˆ f = {A, B,−}



Computing the Duration 
of an Interval
� The interval is the amount of time until the 

next collision
� Compute the earliest surplus collision(s)
� Compute the earliest CA collision(s)
� Select the min



At a Collision
� When a collision occurs
� Some bundles may leave demand sets
� Some allocations may no longer be 

competitive
� Thus, we know the potential demand sets 

and potential CAs, but not which will 
remain so in the next interval



Solving the Allocation of 
Attention, Demand Sets, & CAs

max x f∑ θb −θc + Nyi,b + Nyi,c ≤ 2N
θb −θc + Nyi,b − Nyi,c ≤ N

β f =1∑
θ f −θ ˆ f + Nx f + Nx ˆ f ≤ 2N

θ f −θ ˆ f − Nx f + Nx ˆ f ≤ N

θi,pass + θi,b∑ = Ki

1−θi,pass = (1−G f ,i )β f∑
β f ≤ x f ≤ yi, fi∑
θb ≤ yi,b ≤ Nθb

s.t.

Integer Variables:
yi,b = 1 if b is in i’s

demand set
xf = 1 if f is competitive

Integer Variables:
yi,b = 1 if b is in i’s

demand set
xf = 1 if f is competitive

When b is in i’s demand set
if c is also, their slopes 
are equal,
Otherwise the slope 
of c is greater than b’s

When b is in i’s demand set
if c is also, their slopes 
are equal,
Otherwise the slope 
of c is greater than b’s

The sum of the frequency
with which CAs are selected
as winning is one.

The sum of the frequency
with which CAs are selected
as winning is one.When f is competitive,

if f^ is also, then their 
slopes are equal,
otherwise the slope of f
is greater than f^

When f is competitive,
if f^ is also, then their 
slopes are equal,
otherwise the slope of f
is greater than f^



max x f∑

Solving the Allocation of 
Attention, Demand Sets, & CAs

θb −θc + Nyi,b + Nyi,c ≤ 2N
θb −θc + Nyi,b − Nyi,c ≤ N

β f =1∑
θ f −θ ˆ f + Nx f + Nx ˆ f ≤ 2N

θ f −θ ˆ f − Nx f + Nx ˆ f ≤ N

θi,pass + θi,b∑ = Ki

1−θi,pass = (1−G f ,i )β f∑
β f ≤ x f ≤ yi, fi∑
θb ≤ yi,b ≤ Nθb

s.t.
If an agent is active, 

Ki = 1
Otherwise, Ki = 0

If an agent is active, 
Ki = 1

Otherwise, Ki = 0

Constraints to tie 
integer variables to
continuous variables

Constraints to tie 
integer variables to
continuous variables

Each agent bids if it was
not told it was winning
i.e., whenever a CA to which
it does not belong is selected

Each agent bids if it was
not told it was winning
i.e., whenever a CA to which
it does not belong is selected



The Algorithm: Main Loop
� Solve the MILP to get
� The demand set of each agent
� The allocation of attention
� The competitive allocations

� Compute the duration of the interval,
or terminate

� Compute the prices at the end of the 
interval

� Jump to end of interval and repeat



Step 7
t = 17 1/3



Step 7:
The Allocation of Attention

4/73/145/145/145/143/145/14slope

4/145/145/14AB, C, AC, 
ABCa4

3/74/7ABCa3

4/73/143/14B, BCa2

4/71/145/14A, AB, ACa1

θpassθABCθBCθACθCθABθBθADi





Anecdotal Comparison
� Simulation:

� With δ = .005, took > 3000  iterations
� Accuracy depends on δ
� Depends on tie-breaking rules, ordering  of bidders

� Price Trajectory Algorithm 
� 11 computations
� Focused only on points at which the behavior 

changed
� Exact computation of prices and allocation



Some Comments
� Does not require complete value 

statements 
� The algorithm handles multiple value 

statements



Directions
� Current implementation in AMPL
� Working on a systematic comparison of 

performance
� Improve computation time
� Prove correspondence with simulation
� Apply framework to other iterative 

combinatorial auctions



Questions?


