
Computing Price Trajectories
in Combinatorial Auctions

with Proxy Bidding

Jie Zhong
Gangshu Cai
Peter R. Wurman

North Carolina State
University

Overview
� Problem Definition
� Intuition
� The Algorithm
� Conclusion

Proxy Bidding in Combinatorial
Auctions
� Bidders give a set of values to an agent
� Agents place bids in an internal auction that

solves the WDP and announces prices

Proxy Bidding Diagram

Proxy
Bidder

Auction

Value
Statement

Proxy Bids

Prices,
Winners

Final Prices,
Winners

Benefits
� Speeds up auction
� Simplifies the strategy space
� Interactions with proxies may have

several steps, allowing deferred
computation of valuations

A Simple Iterative
Combinatorial Auction
� Bidders make offers on bundles of items
� All bids are retained
� Price bundles at highest bid
� Inform current winners

(not necessarily the highest bidders)
� Non-winning bidders must beat price by δ

* this will not be a strategic analysis!

Proxy Bidding Rules
� If the agent is not already winning something, it

bids on the item that provides the most surplus

 where is the price of bundle b.

� Bid
� If more than one b satisfies, then randomly

select one.

b* = argmax
b

{vi (b)− pb}
pb

pb +δ

Example

20161671677a4

25171691131a3

20181231594a2

201018218310a1

ABCBCACCABBA

The Proxy Auction Problem
� PAP: Compute the final prices and

allocation of a proxy auction given the
bids

� By Simulation
� Agents bid
� WDP and prices are computed
� Repeat

Simulation is Undesirable
Because…
� Accuracy depends on bid increment
� Slow: Solves multiple WDPs
� Sensitive to magnitude of values
� Sensitive to ordering of agents
� Sensitive to tie-breaking rules

� There is some regularity that we can take
advantage of…

Some Observations
� Periods of steady progress
� Agents maintain a demand set
� Spread bids among bundles in demand set

� Punctuated by changes in behavior when
� A new bundle is added to someone’s

demand set
� An agent drops out
� An allocation becomes competitive and its

members start passing

Di
t

θb
t

θi ,b
t

The Algorithm: Key Concepts
 - Demand Set
� The bundles that give an agent the maximal

surplus at current prices.
 - Attention
� The proportion of time an agent spends

bidding on a bundle in its demand set.
 - Trajectory
� The slope of the price of b, θb

t = θi ,b
t

i
∑

Competitive Allocations
� The set of competitive allocations (CAs)

contains the solutions, f, with the maximal
value, i.e.,

� Must account for bidders who are actively
bidding and those who have stopped bidding

� CAs have slopes:

� CAs are winning with frequency

V (f) = max
ˆ f

V (ˆ f)

β f

θ f = θi, fi
i∈ f
∑

New Bundle Collisions
� For

Pb

Pc

vi (b)− pb = vi (c)− pc

� When the surplus that i gets from c is as
good as from b, i will add c to its demand set

� Special case: when the null bundle enters
demand set, agent becomes inactive

b ∈ Di
t ,c ∉ Di

t

θb
t

θc
t

Competitive Allocation
Collisions
� For f ∈ CA, ˆ f ∉ CA

f = {−,−, AB}

ˆ f = {A, B,−}

Computing the Duration
of an Interval
� The interval is the amount of time until the

next collision
� Compute the earliest surplus collision(s)
� Compute the earliest CA collision(s)
� Select the min

At a Collision
� When a collision occurs
� Some bundles may leave demand sets
� Some allocations may no longer be

competitive
� Thus, we know the potential demand sets

and potential CAs, but not which will
remain so in the next interval

Solving the Allocation of
Attention, Demand Sets, & CAs

max x f∑ θb −θc + Nyi,b + Nyi,c ≤ 2N
θb −θc + Nyi,b − Nyi,c ≤ N

β f =1∑
θ f −θ ˆ f + Nx f + Nx ˆ f ≤ 2N

θ f −θ ˆ f − Nx f + Nx ˆ f ≤ N

θi,pass + θi,b∑ = Ki

1−θi,pass = (1−G f ,i)β f∑
β f ≤ x f ≤ yi, fi∑
θb ≤ yi,b ≤ Nθb

s.t.

Integer Variables:
yi,b = 1 if b is in i’s

demand set
xf = 1 if f is competitive

Integer Variables:
yi,b = 1 if b is in i’s

demand set
xf = 1 if f is competitive

When b is in i’s demand set
if c is also, their slopes
are equal,
Otherwise the slope
of c is greater than b’s

When b is in i’s demand set
if c is also, their slopes
are equal,
Otherwise the slope
of c is greater than b’s

The sum of the frequency
with which CAs are selected
as winning is one.

The sum of the frequency
with which CAs are selected
as winning is one.When f is competitive,

if f^ is also, then their
slopes are equal,
otherwise the slope of f
is greater than f^

When f is competitive,
if f^ is also, then their
slopes are equal,
otherwise the slope of f
is greater than f^

max x f∑

Solving the Allocation of
Attention, Demand Sets, & CAs

θb −θc + Nyi,b + Nyi,c ≤ 2N
θb −θc + Nyi,b − Nyi,c ≤ N

β f =1∑
θ f −θ ˆ f + Nx f + Nx ˆ f ≤ 2N

θ f −θ ˆ f − Nx f + Nx ˆ f ≤ N

θi,pass + θi,b∑ = Ki

1−θi,pass = (1−G f ,i)β f∑
β f ≤ x f ≤ yi, fi∑
θb ≤ yi,b ≤ Nθb

s.t.
If an agent is active,

Ki = 1
Otherwise, Ki = 0

If an agent is active,
Ki = 1

Otherwise, Ki = 0

Constraints to tie
integer variables to
continuous variables

Constraints to tie
integer variables to
continuous variables

Each agent bids if it was
not told it was winning
i.e., whenever a CA to which
it does not belong is selected

Each agent bids if it was
not told it was winning
i.e., whenever a CA to which
it does not belong is selected

The Algorithm: Main Loop
� Solve the MILP to get
� The demand set of each agent
� The allocation of attention
� The competitive allocations

� Compute the duration of the interval,
or terminate

� Compute the prices at the end of the
interval

� Jump to end of interval and repeat

Step 7
t = 17 1/3

Step 7:
The Allocation of Attention

4/73/145/145/145/143/145/14slope

4/145/145/14AB, C, AC,
ABCa4

3/74/7ABCa3

4/73/143/14B, BCa2

4/71/145/14A, AB, ACa1

θpassθABCθBCθACθCθABθBθADi

Anecdotal Comparison
� Simulation:

� With δ = .005, took > 3000 iterations
� Accuracy depends on δ
� Depends on tie-breaking rules, ordering of bidders

� Price Trajectory Algorithm
� 11 computations
� Focused only on points at which the behavior

changed
� Exact computation of prices and allocation

Some Comments
� Does not require complete value

statements
� The algorithm handles multiple value

statements

Directions
� Current implementation in AMPL
� Working on a systematic comparison of

performance
� Improve computation time
� Prove correspondence with simulation
� Apply framework to other iterative

combinatorial auctions

Questions?

